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Quantum computing
in molecular magnets
Michael N. Leuenberger & Daniel Loss

Department of Pliysics and Astronomy, University of Basel, Klingelbergstrasse 82,
4056 Basel, Switzerland

Shor and Grover d d that a p can
p 'm any classical p in factoring bers' and in
searching a database” by exploiting the llelism of

mechanics. Whereas Shor’s algorithm requires both superposi-
tion and entanglement of a many-particle system’, the super-
position of single-particle quantum states is sufficient for Grover’s
algorithm®’. Recently, the latter has been successfully
implemented’® using Rydberg atoms. Here we propose an imple-

ion of Grover’s algorithm that uses molecular magnets®'*,
which are solid-state systems with a large spin; their spin eigen-
states make them natural candidates for single-particle systems.
We show theoretically that molecular magnets can be used to
build dense and efficient memory devices based on the Grover
algorithm. In particular, one single crystal can serve as a storage
unit of a dynamic random access memory device. Fast electron
spin resonance pulses can be used to decode and read out stored
numbers of up to 10°, with access times as short as 10™'* seconds.
‘We show that our proposal should be feasible using the molecular
magnets Feg and Mn,;.
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Atomic structure of copper acetate dimer!

lBLEANEY, B.; BOWERS, K. D.; Anomalous paramagnetism of copper acetate. Proc. R. Soc. A,
212(1119): 451-465, 1952.
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Eom = —32J[s(s+1)—si(s1+ 1) — s (52 +1)] — gusBms
where |51 — 5| < s < s + 5; and mg = —s, ..., +s.
Do Z(T,B) = Y e
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@ Let us consider the Hilbert space of a composite system:
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@ An entangled state can be defined as:

W) # [61) ® |¢2) @ -+ ® |n)
Quantum P = Z,’ P:P(1I) 02y pg) X & PS:)

Entanglement

@ The best knowledge of a whole does not include the
knowledge of its parts.
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@ Let us consider the following example:

| Event | Box A | Box B | Probability |

1 0 1 50%
2 1 0 50%

64) = 68) = 75 (10) + 1))
W) = 5 (100a®[1)e + [1)a ® |0)8) # |¢a) ® |d5) -

Quantum
Entanglement

@ Entangled states cannot be simulated or represented from
classical correlations;

@ Entangled = Quantum Coherence + Classical Correlations;
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@ Let us consider a Heisenberg dimer:

H=—JS)S5
pag =e PM/Z
1+¢(T)
_ 1 1-c(T) 2¢(T)
pas(T) = 3 2c(CT) 1—Cc(T)

1+¢(T))

o(T) = (5§ ® §§Y) = el (T) - 1
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@ Let us consider a Heisenberg dimer:

H= —J§A§B
pag =e H/Z
1+¢(T)
1 1—¢(T) 2¢(T)
pas(T) = -
Quantum 4 2C( T) L= C( T)
1+¢(T)]

o(T) = (5§ ® §§Y) = el (T) - 1

@ SPOILER ALERT: Coherence = All off-diagonal elements!

.
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W) # |6n) @ [62)
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Hpei = —JS - S Esy — Es, = J

P

J>0, parallel aligniment (Es,, > Es,)
J<O0, antiparallel aligniment (Es,, < Es,)
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Thermal Entanglement

W) £ 1) ® |62)
p#ELiprd @pd) @l @
Hpei = —J% 52 Es, — Es, = J
J>0, parallel aligniment (Es,, > Es,)
J<O0, antiparallel aligniment (Es,, < Es,)
Es m, |57 m5> {|m51’ m52>}
0 [1,1) ) separable
0 |1,-1) ) separable
0 1,0) )+ ] 41) | entangled
J 0,0) ) — entangled
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@ Quantum coherence, arising from quantum
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Quantum

Entanglement @ Coherence has an important role in many quantum
information processes.
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Clebson Cruz Quantum COherence:

@ Geometric approaches are widely used to characterize and
quantify the quantum correlations.

@ Phys. Rev. Lett. 113, 140401 (2014):
From the minimal distance D(p, o), between the quantum
state p and a set {o = Z: |k) (k| € I} of incoherent state.

Cp = pepinh D(p, o)

D the /; trace norm can be a reliable measurement of quantum
coherence as

C, = minflp—olly = [(ilol)] -
i#]
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Metal Silicate Framework KNaCuSizO1g

Crystal structure of the Metal Silicate Framework
KNaCuSi4010

Journal of Solid State Chemistry, 182(2), 253-258.
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Clebson Cruz

o Cu?t ions - d? electronic
configuration;

@ a Heisenberg spin 1/2 dimer;
@ 2 qubit system;

@ Dimers are magnetically
isolated;

@ Separated by two SiO4
corners;

Journal of Solid State Chemistry, 182(2), 253-258.
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@ Let us consider a Heisenberg dimer:

pag = e PH/Z with H = —J5, 55

1+¢(T)
1 1—¢(T) 2¢(T)
paslT) = 7 2¢(T) 1-¢(T)

1+¢(T))

o(T) = ey x(T) = 1

Clebson Cruz (UFOB)



Quantum Coherence of KNaCuSisOqg

Clebson Cruz Quantum Coherence

@ Let us consider a Heisenberg dimer:

pag = e PH/Z with H = —J5, 55

1+¢(T)
1 1—¢(T) 2¢(T)
pas(T) = 2 2¢(T) 1—¢(T)
1+ ¢(T)

o(T) = ey x(T) = 1

() =[BT
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Clebson Cruz First-Principles Calculations

@ Kohn-Sham equations were solved;

45V + Ve(R)] 4i(P) = Exoi(P)

where n(r) = Z,N |¢i(F)|2

Vs(R) = V() + | 57 i ; d*r' + Vae[ns(7)]

@ Crystal structure was optimized;

@ Third-order Birch-Murnaghan equation;
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First-Principles Calculations
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Temperature dependence of the quantum coherence calculated for

different values of hydrostatic pressure.
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Influence of the longitudinal and transverse magnetic field

@ Quantum coherence is basis dependent.

@ Basis choice depends on the physical problem under
investigation.

@ Molecular magnetic systems: spin eigenbasis in a certain
direction, {Sx, S,, S, }, within a quantum metrology setting.

The Hamiltonian model that rule this system interacting with an
external magnetic field is given by:

H:—JS_i-S_;—uBgé-<§1+§1).
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Longitudinal Magnetic Field

Cu(T,

B,)
S (|cosh(Bh.) — 1| + 4 [sinh(3h,)] + |cosh(ﬁhz)—e“‘X|>J

Coherence
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@ Study the creation of quantum logic gates with the molecular
magnets;

@ Obtain new topologies of molecular magnetic systems with
optimized quantum properties;

@ Study thermal effects on the quantum coherence;

Molecular engineering for quantum computing;
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